

Enhanced manufacturing processes

New Welding Processes

Full project report

- Development and evaluation of new, alternative, welding techniques for hydraulic cylinders manufacturing
- Simulation/Modelling of welding processes

- Instituto de Soldadura e Qualidade (ISQ) PT
- Scaglia S.p.A. (Scaglia) I
- Centre de Recherche en Aeronautique (CENAERO) BE
- Fundiciones de Roda S.A. (Roda) ES
- Pedro Roquet S.A. (Roquet) ES

NEW DESIGN and MANUFACTURING PROCESSES for HIGH PRESSURE FLUID POWER PRODUCTS

STUD (2)

(1, 3)

(1, 2, 3)

(1, 2, 3)

Electron Beam (1, 2, 3)

1

LASER

Research/work performed - ISQ

Research/work performed - ISQ

STUD

11

PR

Research/work performed - SCAGLIA

Temperature control with thermocouples

Measurement of power consumption

Characterisation of the friction welding cycle

Research/work performed - SCAGLIA

Welding of cast irons with using casted inserts (RODA)

Welding of cast irons with using welded inserts (ISQ)

Welding of modified cast irons (RODA)

Research/work performed - CENAERO

-20

-40

20

40

-20

-40

20

40

Research/work performed - CENAERO

heating

General meeting at Vic 26th-27th May 2008

cooling

Driven friction welding simulation

Achievements

Alternative processes: Higher performance and competitivity

Application	OIL Port	Shell/Cap	Rod/Eye
Welding process			
GMAW (reference)	Weld time: 30 s Heat input: 33 Wh	Weld time: 74 s Heat input: 101 Wh	Weld time: 87 s Heat input:13 Wh
FRICTION	Not feasible	Weld time: 22 s Heat input :60 Wh	Weld time: 20 s Heat input 50: Wh
LASER	Weld time: 8 s Heat input: 6 Wh	Weld time: 22 s Heat input: 31 Wh	Cracks
EBW	Weld time: 12 s Heat input: 13 Wh	Weld time: 71 s Heat input: 52 Wh	Weld time: 27 s Heat input: 23 Wh
HYBRID	Not feasible	Weld time: 20 s Heat input: 35 Wh	Cracks
STUD	Weld time: 0.75 s Heat input: 12 Wh	Not feasible	Not feasible

• Development of novel processes for welding cast iron components

- Production of **prototypes** demonstrating main project developments in welding
- Determination of real friction welding temperatures and energies involved

Alternative processes: Higher performance and competitivity

• Development of a new solution for welding cast iron components, complying with the project's objective of new basic materials for cylinders

NEW SOLUTION:Use of intermediate inserts for
joining cast iron to steel

• Development of more competitive welding processes for assembling hydraulic cylinder components

Driven Friction Welding model

- A math. and a numerical model have been set up for the DFW process
- DFW of a rod eye welding using DEFORM 2D
- Numerical results are in good agreements with samples welded by Scaglia

Fusion welding model

- Numerical model implemented in Morfeo (Cenaero in house software)
- Heat flux parameters derived from macro sections
- Laser welding simulations performed on Cylinder 2230 (oil port and end cap welding)
- Numerical results are in good agreements with measured distortions
- Computation of residual stresses and distortions after cooling

Major technical issues:

• Reliable material parameters not always available from the literature and should be measured experimentally over a large range of temperature

